494 Chapter 12.  Fast Fourier Transform

now is: The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, ie., a sharp spike,
whose width gels narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
dala, we arc almost never given a continuous function fi(t) to work with, but are
given, rather, a list of measurements of A(ts) for a discrete set of ¢;'s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourler Transforms and Thelr Physical Applications (New York: Aca-
demic Press),

Elliolt, D.F,, and Rao, K.R. 1982, Fas! Transforms: Algori nalyses, Applic {New
York: Academic Press),

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h{t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let A denote the time interval between
consecutive samples, so that the sequence of sampled values is

ho=h(nd) n=...,-3,-2,-1,0,1,33,... (12.1.1)

The reciprocal of the time interval A is called the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency fe, called the
Nyquist critical frequency, given by
1
fe= K ‘ (12.1.2)
f
If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Crifical sampling of a
sine wave is two sample points per cycle, One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2. .
The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news, First the good news. Itis the remarkable
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12.1 Fourier Transform of Discretely Sampled Data 495

fact known as the sampling theorem; 1f a continuous function h(t), sampled at an
interval A, happens to be bandwidth limitedto frequencies smaller in magnitude than
foie, iEH{f) = Oforall |f|{ > f. then the function h(t) is completely determined
by its samples-hn. In fact, h{t) is given explicitly by the formula

= sin[2m fo(t — nA)]
Bty =A “;w T R (12.1.3)
This is a remarkable theorem for many reasons, among them that jt shows that the
“information content” of a bandwidth limited [unction is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In Lhis case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate A~* equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range ~fo < f < fc is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (—fo, fo) is aliased (falsely translated) into that range by the very act of
discrete sampling. You cen readily convince yourself that two waves exp(2mifit)
and exp(2wifyt) give the same samples at an interval A if and only if f, and
f2 differ by a muitiple of 1/A, which is just the width in frequency of the range
(—fo: o). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
range in between — f, and f,. Then we look to the Fourier transform to tell whether
Ihe continnous fiznction has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches f. from below, or —f. from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values

he=h(t), te=kA, k=0,12,...,N-1 (12.14)
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h(n)
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aliased Fourier transform
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Figure 12,1,1,  The continuous function shown in (a) is nonzere only for g finite interval of time T,
1t follows that fis Fourier transform, whose modulus is shown schemalically in (b), Is nol bandwidth
fimited but has finite amplitude for alt frequencies. If the original function Is sampled with a sampling
interval A, 15 in (), then the Fourier transform (c) is defined only beiween plus and minus the Nyquist
critical frequency. Power ontside that range is folded over or *yliased” into the mnge. The effect can be
eliminated only by low-pass filtering the original funciion before sampling.

5o that the sampling interval is A, To make things simpler, let us also suppose that

N is even. If the function A(t) is nonzero only in a finite interval of time, then

that whole interval of time is supposed to be contained in the range of the N points

given, Alternatively, if the function I(t) goes on forever, then the sampled points
are supposed to be at least “typical” of what h(t) looks like at ail other times.

With N oumbers of input, we will evidently be able to produce no more than

N independent numbers of output. So, instead of trying to estimate the Fourier

transform H(f) at all values of f in the range —fc lo fer let us seek estimates

only at the discrete values
N N
F)

n
- fﬂzm, n= e (12.1.5)

The extreme values of n in (12:1.5) correspond exactly to the lower and npper limits
of the Nyquist eritical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N, values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they sre equal), but all the
others are, This reduces the count to N.
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The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

50 N-1 N-1
H(f) = / h(t)cz"‘f"‘dt ~ Z e e2Mifath A — A Z e pimikn/N
— k=0 k=0
(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12,1.6) is called the discrete Fourier transform of the
points hg. Let us denote it by Hy,

- N-1
Hao= Y by e?rin/V (12.1.7)
k=0

The discrete Fourier transform maps N complex numbers (the hy’s) into iV complex
numbers (the H,'s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a sel
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval A can be rewritten as

H(fn)~ AH, (12.1.8)

where f, is given by (12.1.5). :

Up to now we have taken the view that the index n in (12.1.7) varies from
—N/2 10 N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in
n, with period N, Therefore, H_, = Hy—n n=1, 2,.... With this conversion
in mind, one generally lets the n in H, vary from 0 to N - 1 (one complete
period). Then n and k (in h) vary exactly over the same range, so the mapping
of N numbers into N numbers is manifest. When this convention is followed,
you must remember that zero frequency corresponds lo n = 0, positive frequencies
0 < f < f. correspond to values 1 < n < N/2 — 1, while negative [requencies.
—f, < f < 0 comespond to N/2+1<n < N—1 The value n = N/2
corresponds to both f = fo and f = —fe. ’

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmelries in the table
following equation (12.0.3) hold if we read hy for A(t), Hn for H{f),and Hy—n.
for H(—f). (Likewise, “even” and “5dd" in time refer to whether the vatues hg at k

and N — ) are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the et
of hi's exactly from the Hy's is:

=2

1= i
b= 3 Hn g2

n

T .

il

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (i) dividing the answer by N. This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.
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498 Chapler 12.  Fast Fourier Transform 12.2 Fast Fourer Transform (FFT) 499

In the last line. W is the same complex constant as in (12.2.1), F denotes the kth
component of the Fourier transform of length /2 formed from the even components
of the original f;’s, while F{ is the corresponding transform of length N/2 formed
from the odd components. Notice also that % in the last line of (12.2.3) varies from
0to NV, not just to N/2. Nevertheless, the transforms F and F are periodic in k
with length N/2. So each is repeated through two cycles to obtain F.

The wonderful thing about the Danielson-Lanczos Lenuma is that it can be used

The discrete form of Parseval’s theorem is even-numbered points of the original N, the other from the odd-numbered points.
The proof is simply this:
N-1 PR .
S Il® = ¥ ST HLE (12.1.10) Nol
k=0 n=0 Fp = z ?midk/N f
. =0
There are also discrete analogs to the convolutionand correlation theorems (equations oz N/2—1 Nj2-1 =
12.0.9 and 12.0.11), but we shall defer them o §13.1 and §13.2, respectively. 23 _ 2 ik(25) [N 2wik(2j+1)/N £
E¥ = e Fi+ Y € Jazwt -2
% g =0 =0 (12.2.3) g
CITED REFERENCES AND FURTHER READING: Foz N/2-1 Nj2—1 . o3
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12.2 Fast Fourier Transform (FFT)
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How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
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recommend that you only use FFTs with N a power of two, If the length of your data
set is ot a power of two, pad it with zeros up to the next power of two. (We will give

In other words, the vector of hy's is multiplied by a matrix whose (n, k)th element
‘is the constant W to the power n x k. The matrix multiplication produces a vector

]
was this: Define W as the complex number 03 . . 3 ;
58 recursively. Having reduced the problem of computing Fi to that of computing
W = e2milN (122.1) =g Fg and Fg, we can do the same reduction of Fi to the problem of computing
2 the transform of its N/4 even-numbered input data and N/4 odd-numbered data. s
Then (12.1.7) caii be wrilten as g In other \Yords, we catl define E,f“ and FE° 1o be the discrete Fourier transforms 2
ot of the points which are respectively even-even and even-odd on the successive :“
N-1 28 subdivisions of the data. o8
H, = Z Wrkhy (1222) %% Although there are ways of treating other cases, by far the easiest case is the
k=0 . £ one in which the original IV is an integer power of 2. In fact, we calegorically
g
3
g

more sophisticated suggestions in subsequent sections below.) With this restriction
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result whose components are the H,,'s. This matrix multiplication evidently requires ?g 8 on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
N? complex multiplications, plus a smaller number of operations to generate the §§ until we have subdivided the data all the way down to transforms of length 1. What
required powers of W, So, the discrete Fourier transform appears to be an O(N?) 78 bl is the Fourier transform of length one? It is just the identity operation that copies its g
process. These appearances are deceiving! The discrete Fourier transform can, %g A one input number into its one output stot! In other words, for every paltern of log, N ; A
i; fact, be co;nputed i; F(;(ly\;;ogg g ) oper';\)hgns Wl;\l;, lEm al]%;)fltgn}v Czﬂ!le'd the fast 52 ¢'s and o's, there is a one-point transform that is just one of the input numbers f sz

‘ourier transform, or . The difference between N log, IV an is immense, LE T ge
With N = 10°, forexample, it is the difference between, rogghly, 30 seconds of CPU ?‘72 Fgeeeocomone = f for some n (12.24) ?,:5
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence % g‘ % §
of an EFT algorithm became generally known only in the mid-1960s, from the work g8 (Of course this one-point transform actually does not depend on k, since it is periodic £8
of W, Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient H in k with period 1.) ’ 7

methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 18051

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length N/2. One of the two is formed from the

The next trick is to figure out which value of n corresponds to which patiern of
e's and o's in equation (12.2.4). The answer is: Reverse the pattern of ¢’s and o's,
then let e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is. because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits of n. This idea of bit reversal
can be exploited in a very clever way which, along with (he Danielson-Lanczos




